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Abstract
We develop a device model for a heterostructure device with an electron channel and with a
periodic system of interdigitated gates. Using this model, we find the conditions of the
self-excitation of plasma oscillations in portions of the channel. It is shown that the
self-excitation of plasma oscillations in these devices and the terahertz emission observed in the
experiments (Otsuji et al 2006 Appl. Phys. Lett. 89 263502; Meziani et al 2007 Appl. Phys.
Lett. 90 061105; Otsuji et al 2007 Solid-State Electron. 51 1319) might be attributed to the
electron-transit-time effect in the barrier regions.

1. Introduction

Recently, the emission of terahertz radiation was observed
from a heterostructure device with an electron channel similar
to a field-effect transistor with an interdigitated system of
gates [1]. A schematic view of the device structure is shown in
figure 1(a). At the applied gate voltages, the electron channel
is partitioned into the strips of a two-dimensional electron gas
(2DEG) beneath the positively biased gates and the barrier
regions, separating these 2DEG strips, beneath the negatively
biased gates. The terahertz emission from this device was
attributed to the self-excitation of the plasma oscillations in
the 2DEG strips and the conversion of these oscillations into
radiative electro-magnetic modes. However, the mechanism of
the self-excitation of the plasma modes, i.e. the mechanisms
of instability of a steady-state current flow from the device
source to the drain when some source–drain voltage is applied
is not understood yet. As shown in the experiments [1–3],
the illumination of optical light at the device, which causes
the interband photogeneration of electrons and holes, promotes
the emission of the terahertz radiation. Previously, several
mechanisms of the plasma instability leading to the self-
excitation of the plasma oscillations in the heterostructures
akin to field-effect transistors have been proposed and

substantiated theoretically and experimentally: the Dyakonov-
Shur mechanism of the plasma oscillation self-excitation [4, 5],
mechanisms associated with the negative dynamic conductivity
(due to the negative differential conductivity in the case of the
resonant tunneling [6] or the electron-transit-time effects [7, 8])
of some portions of device structures, the resonant excitation
of the plasma oscillations by incoming optical radiation of
two lasers with close frequencies [9–12]. In this paper,
we develop a model for the heterostructure device with the
periodically double-gated electron channel and propose a
plausible mechanism which can be responsible for the plasma
instability leading to the terahertz emission from such a
device [1–3]. This mechanism is associated with the electron-
transit-time effects due to the finiteness of the electron transit
time across the barrier regions separating the 2DEG strips.
On the basis of the model developed, we provide realistic
interpretation of the experimental results [1–3].

2. Device model

We consider a heterostructure with an electron channel and a
periodic system of interdigitated gates, as shown in figure 1(a).
The gate lengths are Lg1 and Lg2 and the period of the gate
system is L > (Lg1+Lg2). It is assumed that the bias potentials
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Figure 1. Schematic view of a heterostructure with schematic view
of (a) the device structure, (b) its band diagram, (c) snapshot of
spatial distribution of the ac potential associated with plasma
oscillations, and (d) simplified equivalent circuit of the device.
Opaque and open circles correspond to electrons and holes,
respectively. Wavy arrows indicate photogeneration of electrons and
holes.

are applied to the pertinent gates: a positive (with respect to the
channel pinch-off voltage) potential Vg1 is applied to the short
gates (with the length Lg1) and a negative potential Vg2 < 0 to
the longer gates. As a result, the dc electron density under
the former gates is equal to �0 = �d + æVg1/4πeWg =
æ(Vg1 − Voff)/4πeWg, where �d is the donor sheet density
in the electron channel (or in the gate layer), e is the electron
charge, æ is the dielectric constant, Wg is the gate layer
thickness, and Voff is the channel pinch-off voltage. The value
|Vg2| is assumed to be sufficiently large, so that the portions
of the electron channel under the long gates are depleted. The
length of the depleted section (barrier length) is Lb � L − Lg1.
Thus, the electron system in the device under consideration
comprises the strips of 2DEGs (under short gates) separated by
the potential barriers formed under long depleting gates. Under
a small source–drain voltage Vd, a lateral dc current created by
electrons overcoming the barriers occurs. The band diagram
for the electron channel is shown schematically in figure 1(b).

Let us search for the signal component of the self-
consistent potential in the form δϕ(x, t) = δϕω(x) exp(−iωt),
where ω is the signal frequency. In this case, the self-
consistent potential and the signal component of the electron
density �ω(x) in the portions of the electron channel under the
positively biased gates, i.e. in the quasi-neutral portions of the
electron channel (−Lg1/2 + nL < x < Lg1/2 + nL), are
related by the following equation:

δϕω = −4πeWg

æ
δ�ω. (1)

Here n = 0,±1,±2, . . . is the index of the gate.

The linearized hydrodynamic equations (the Euler
equation and the continuity equation) coupled with (1)
result in the following equation for the signal component
of the potential in the quasi-neutral portions of the electron
channel [5, 6]:

s2 d2δϕω

dx2
+ ω(ω + iν)δϕω = 0. (2)

Here s = √
4πe2�0Wg/æm is the characteristic plasma

velocity in the gated electron channel, m is the electron
effective mass, and ν is the collision frequency of electrons
with impurities and phonons.

3. Dispersion equation for plasma oscillations

The signal components of the potential at the points separating
the quasi-neutral and depleted sections of the channel should
be matched taking into account the ac currents between the
neighboring quasi-neutral sections (see figure 1(c), where
the solid and dashed lines correspond to the ac potential
distributions in 2DEG strips and in the barrier regions,
respectively). Assuming that these currents are associated
with the thermionic emission over the barriers in the depleted
sections, it is necessary to calculate the ac current between
two neighboring 2DEG strips (the ac conductance G(ω)

in figure 1(d)), taking into account the presence of the
highly conducting gate covering the depletion region and
the finiteness of the electron transit time. According to the
Shockley–Ramo theorem [13, 14], the ac current between
two neighboring 2DEG strips can be calculated as the ac
current injected from one 2DEG strip into the depletion region
multiplied by a complex phase factor f (θ) depending on the
so-called transit angle θ = ωτt/2, where τt is the characteristic
electron transit time, and determined by the geometry of the
conducting parts of the system. Considering this, one can use
the following equation:

δ jω = jm exp

(
ηevd − �b

kBT

)(
ηe�ϕω

kBT

)
f

(
ωτt

2

)

= j0

(
ηe�ϕω

kBT

)
f

(
ωτt

2

)
. (3)

Here, �b is the height of the barrier in the depleted sections
without the dc source–drain bias and the signal variations of
the potential, vd = Vd/N is the dc potential drop across each
barrier, N is the number of periods of the gate system, kB is the
Boltzmann constant and T is the temperature, jm = e�0vth is
the maximum current which can exist between the sections in
question, j0 = jm exp[(ηevd −�b)/kBT ] is the dc current, and
vth � √

kBT/m is the thermal velocity. The value η � 1/2
is determined by the shape of the barrier. If Lg2 � Wg,
η � lg/L � 1. The phase factor can be presented as

f

(
ωτt

2

)
= 1

Leff

∫ Leff

0
dx g(x) exp

(
i
ωτt x

Leff

)
, (4)

where Leff is the effective length of the electron transit
(between highly conducting parts of the device), and g(x)

is a geometrical form factor. In the cases of the electron
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Figure 2. Real parts of the phase factors as functions of the electron
transit angle θ .

propagation between two parallel conducting planes (as in the
usual capacitor) and two coplanar conducting planes, g(x) = 1

and g(x) = Leff/

√
L2

eff − x2, respectively [15].
Integrating over the coordinate x in (4), for the two cases

in question one can obtain the following, respectively [15]:

f⊥(θ) = eiθ sin θ

θ
, f‖(θ) = eiθ J0(θ), (5)

where J0(θ) is the Bessel function of zero order. In the
system under consideration, the depleting gate substantially
affects the ac conductance between the 2DEG strips. To
avoid rather numerical calculations, we shall assume that
the electrons injected from one 2DEG strip and collected by
another contribute to the ac induced current only during their
flight between the 2DEG strips and edges of the gate. In this
case, one can set the effective length equal to Leff ∼ lg =
L−Lg1−Lg2, i.e. of the order of the spacing between the gates.
This assumption is supported by the experimental fact that the
properties of the systems under consideration with significantly
different lengths of the depleting gates but equal space between
the neighboring gates are fairly similar. Hence, τt = lg/vt, and
θ = ωτt/2 = ωlg/2vth. Both functions in (5) provide similar
dependences of the phase factor on the transit angle and can
be considered as the extreme limits for the real dependence.
Figure 2 shows the dependences of the real parts of f⊥(θ) and
f‖(θ), which are important in the following.

On the other hand, the ac current is equal to the ac
conductivity current in the quasi-neutral section near its edge
x = Lg1/2, which is proportional to the lateral ac electric field
−dϕω/dx at this point:

δ jω = − e2�0

m(ν − iω)

dδϕω

dx

∣∣∣∣
x=±Lg1/2

. (6)

The ac potential drop, �ϕω, across the barrier located
between x = Lg1/2 and x = L − Lg1/2 is given by (see
figure 1(c)):

�ϕω = δϕ|x=Lg1/2δϕ|x=L−Lg1/2. (7)

For simplicity, we assume that the velocity of the electrons
propagating over the barrier is of the order of the thermal

velocity. Similar relations can be written down for other barrier
regions.

For the plasma oscillations modes with asymmetrical
distributions of the ac potential under the short gates,
δϕ|x=L−Lg1/2 = −δϕ|x=Lg1/2. Hence, (7) can be presented as

�ϕω = ±2δϕ|x=±Lg1/2. (8)

Thus, equalizing the right-hand sides of (3) and (6)
and considering (8), the boundary condition for (2) can be
represented as follows:

dδϕω

dx

∣∣∣∣
x=±Lg1/2

= ±i2ηντth

(
j0
jm

)(
ω + iν

ν

)

× f

(
ωτt

2

)
δϕω

lg

∣∣∣∣
x=±Lg1/2

. (9)

As a result, searching for the solution of (2) in the region
−Lg1/2 � x � Lg1/2 in the form

δϕω ∝ sin

[√
ω(ω + iν) x

s

]
(10)

and taking into account boundary condition (9), we obtain the
following dispersion equation which determines the complex
signal frequency ω, i.e. the spectrum of the plasma oscillations
and the rate of their growth or damping:

√
ω

ω + iν
cot

[
π

√
ω(ω + iν)

2�

]
= iβ

(
j0
jm

)
f

(
ωτt

2

)
, (11)

where

� = πs

Lg1
=

√
4π3e2�0Wg

æmL2
g1

(12)

is the characteristic plasma frequency and β = 2ηs/vth.

4. Plasma instability

If the height of the barriers in the depleted sections of the
channel is sufficiently large, so that β( j0/jm) � 1, the right-
hand side of (11) is very small. In the lowest approximation,
one can set it equal to zero. In this case, (11) yields the
following formula for the complex signal frequency: ω =
�k − iν/2, where �k = �(2k − 1) and k = 1, 2, 3, . . .

is the plasma mode index. Thus, at high barriers the quasi-
neutral sections are effectively separated from each other and
the plasma frequencies Re ω = �k and the plasma oscillations
growth rate, i.e. the imaginary part of the signal frequency
Im ω = γk , is negative: γk = −ν/2. This implies that, in such
a case, the plasma oscillations under consideration are damped
out.

At lower barriers, the term in the right-hand side of (11)
becomes essential. In this case, one can search for solutions
of (11) in the form ω = �k + δ, where |δ| is assumed to be
small in comparison with �. As a result, we obtain

γk � −ν

2

[
1 + 4β

π

(
�

ν

)(
j0
jm

)
Re f

(
�kτt

2

)]
. (13)
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Figure 3. Normalized instability threshold current jth/jm versus transit time τt calculated for different form factors ((a) for Re f⊥(θ) and
(b) for Re f‖(θ)) with k = 1 and �/2π = 2 THz. The dotted lines depict j min

th /jm.

When Re f (�kτt/2) < 0, the second term in the brackets
in (13) associated with the electron-transit-time effects is
negative. This occurs at some values of the transit angle �kτt/2
and implies that the plasma oscillations growth rate can be
positive. Using (13), we arrive at the following conditions at
which the plasma oscillations growth rate γk > 0:

ν

�
<

4aβ

π

(
j0
jm

)
, (14)

where a is a numerical coefficient equal to | Re f (θ)| at the
first minimum of Re f (θ). At the first minimum Re f⊥(θ) =
cos θ sin θ/θ � −0.217 and Re f‖(θ) = J0(θ) cos θ �
−0.094, hence the coefficient a depends on the device
geometry: 0.094 < a < 0.217. At relatively high barriers
or low temperatures (�b > kBT ), inequality (14) is satisfied
when the quality factor of the plasma oscillations Q ∼
�/ν is sufficiently large. If condition (14) is satisfied, the
electron system in the device under consideration is electrically
unstable. This instability corresponds to the self-excitation of
the plasma oscillations modes for which �kτt ∼ 2.5π . The
necessary condition of the plasma oscillation self-excitation
can be expressed via the dc current j0:

j0 > j min
th = jm

(
π

8η a

)(
ν

�

)(
vth

s

)
. (15)

At η = 0.25, the factor (π/8η a) = 7.24–16.7. The last
two factors in the right-hand side of (15) are usually fairly
small, so that jth is small in comparison with jm, i.e. the
plasma instability can occur at the dc current j0 which is
smaller than the current maximum value jm. Considering the
dependences of � and s on the dc electron density �0, the
minimum threshold current can also be presented as

j min
th = b

(
Lg1

Wg

)(
mνv2

th

e

)
, (16)

where b = (æ/32πη a). Assuming æ = 12 and η = 0.25, for
the factor b in (16) we obtain b � 2.2 − 5.1. Setting m = 4 ×
10−29 g, ν = 1012 s−1, vth � 2 × 107 cm s−1, s = 108 cm s−1,
Lg1/Wg = 2, Lg1 = 250 nm (with these, �/2π = 2 THz), we
find j min

th � 48–112 mA cm−1, and inequality (15) becomes

j0 > (0.12 − 0.27) jm. These quantities are of the same order
as those observed in the experiments [1–3].

The value j min
th corresponds to the transit time τt at which

the factor Re f (�kτt/2) reaches the absolute minimum. For
other values of τt (at which Re f (�kτt/2) < 0), the real
threshold current jth is given by

jth = j min
th

min Re f (�kτt/2)

Re f (�kτt/2)
. (17)

Figure 3 shows the dependence of the normalized instability
threshold current jth/jm on the transit time τt calculated
for different phase functions ((a) for Re f⊥(θ) and (b) for
Re f‖(θ)) with k = 1 and �/2π = 2 THz. The dotted
lines in figure 3 depict j min

th /jm. Since the growth rate γk

can be positive only when Re f (θ) < 0 and the current j0

cannot exceed the maximum current jm, the plasma oscillation
instability (γk > 0) can occur with some ranges of the transit
time, as seen in figure 3.

Figure 4 shows the values of the plasma oscillation growth
rate γk/2π (k = 1) as a function of the transit time τt

at different values of the dc current j0/jm with the above-
mentioned device parameters. One can see from figure 4 that
the plasma instability can occur at some ranges of the transit
time if the current is sufficiently large.

5. Discussion

As follows from the above plasma instability criterion
(see (15)), an increase in the source–drain voltage Vd (and,
consequently, in the value vd) can lead to the transition from
a stable state to the plasma oscillations self-excitation. The
transition from a stable state to the self-excitation of the plasma
oscillations due to the plasma instability is accompanied by
an increase in the dc current j0 above its threshold value jth.
The emission of terahertz radiation observed previously [1–3]
might be attributed to the transformation of the self-excited
plasma oscillations in the device with periodic gates considered
above into transverse electro-magnetic modes.

An increase in the source–drain voltage can result in a sub-
linear increase in the dc current due to heating of electrons
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Figure 4. Plasma oscillations growth rate γk/2π (k = 1) as a function of transit time τt with j0/jm = 0.2, 0.3, 0.4 for different form factors
(device parameters mentioned in the text are used). ((a) for Re f⊥(θ) and (b) for Re f‖(θ)).

in the 2DEG strips and, consequently, an increase in the
thermionic emission of electrons from one strip to another.

The illumination of the device under consideration by
light resulting in the interband photogeneration of electrons
and holes should also promote the plasma instability and
the terahertz emission. The mechanism of the effect of
illumination is associated with the accumulation of the
photogenerated holes in the barrier regions (see figure 1(b))
and, hence, the lowering of these barriers. The sensitivity of the
plasma instability to the variation of the source–drain voltage
and illumination was observed experimentally. The equations
obtained above can also be used in the case of illumination,
bearing in mind that the value of the dc current j0 crucial for
the instability condition (see (17) and (18)) increases compared
with that in the dark conditions:

j0 = j dark
0 + RI. (18)

Here R ∝ γ /τr is the device photoresponsivity and I
is the flux of the incident optical radiation, where γ is
the quantum efficiency of optical absorption and τr is the
recombination time (the lifetime of holes in the barrier
regions). The latter can be fairly long due to a spatial
separation of holes (located mainly in the barrier regions)
and electrons (located mainly in the 2DEG strips). This can
provide rather high values of the photoresponsivity due to
large photoelectric gain. Such an effect is common for the
photoconductivity in different inhomogeneous semiconductor
structures [16–18] (see also [19]) for example, in heavily doped
strongly compensated semiconductors and the so-called dual-
band quantum-well photodetectors. Owing to a relatively long
recombination time, the elevated values of the dc current and,
therefore, the favored conditions for the plasma instability and
terahertz emission can be maintained not only at stationary
illumination but during a prolonged period after the optical
pulses.

Due to a drop in the potential along the structure
associated with the applied source–drain voltage, the dc
electron densities in different 2DEG strips �0 can be slightly
different. As a result, the pertinent values of the characteristic
plasma frequency � corresponding to different 2DEG strips
can differ from each other. Taking into account that the plasma

instability in question can occur in a certain range of the
transit angles, where Re f < 0 (see (13)), the spread in the
plasma frequencies can be responsible for the relatively wide
spectrum of the emitted terahertz radiation. The excitation of
plasma oscillations and the pertinent terahertz emission with
a substantially narrow spectrum was observed in the devices
under consideration when the generation of photoelectrons and
photoholes was due to short optical pulses. In the framework
of our model, the effect of narrowing of the spectrum can be
attributed to the fact that strong optical pulses provide more
uniform distributions of the electron density over the different
2DEG strips, because in such a case the electron densities
in these strips during some period after the excitation are
determined to a greater extent by the photogeneration. As
shown previously [20–24], the distribution of the dc potential
in a multiple-well structure under illumination can be smoother
in the main portion of the structure (except a narrow region
adjacent to the source contact). Moreover, the shape of the
dc potential distributions in multiple-well structures and in the
device under consideration depends on the properties of the
source contact. Hence, the spectrum of plasma oscillations and
emitted terahertz radiation can be different in the devices with
thermionic injection from the source contact (as schematically
shown in figure 1(b)) and with tunneling injection from this
contact. One needs to point out that the excitation of the plasma
oscillations modes with a nonuniform distribution along the
2DEG strips (in the direction perpendicular to the current
flow) can markedly complicate the pattern of the effect [25].
However, this requires a separate careful study.

The mechanism of the plasma instability under considera-
tion and the pertinent self-excitation of the plasma oscillations
can also be explained using the simplified device equivalent
circuit shown in figure 1(d). In this circuit, Cg ∝ æ Lg1/Wg

is the capacitance of the 2DEG strip, R ∝ mν/�0 is its re-
sistance, and L ∝ mLg1/�0 is the inductance of this strip as-
sociated with the electron inertia [8], so that � = (CL)−1/2.
The barrier region conductance G(ω) = δ jω/� ϕω ∝ j0. It is
a function of the signal frequency ω and is negative in certain
ranges of this frequency corresponding to the electron-transit-
time resonances. The C − L − R sections of the circuit play
the role of the resonators, which are excited due to the negative

5



J. Phys.: Condens. Matter 20 (2008) 384207 V Ryzhii et al

dynamic conductance of the barrier regions which electrically
connect such resonators.

One might concede that the emission of optical phonons
by the electrons propagating across the barrier region can
also be responsible for the plasma instability and terahertz
radiation. Such mechanisms of plasma instability have been
discussed for a rather long time [26–28]. However, the dc
potential drop, evd, across each barrier region in some devices
studied experimentally was less than 20 meV, so that the energy
acquired by electrons in these region is markedly smaller than
the optical phonon energy h̄ω0.

6. Conclusions

We proposed a device model for a heterostructure device with
the periodically double-gated electron channel. The model
accounts for the features of the electron transport across the
device structure with the 2DEG strips separated by the barrier
regions and the possibility of the plasma oscillations in the
2DEG strips electrically coupled via the barrier regions. We
demonstrated that, due to the negative dynamic conductance
of the barrier regions associated with the electron-transit-time
effects, the plasma instability leading to the self-excitation of
the plasma oscillations (and the emission of terahertz radiation)
becomes feasible when the dc current (photocurrent) exceeds
a certain threshold value. Our model explains the following
experimental facts [1–3]:

(1) the threshold behavior of the plasma oscillations self-
excitation and terahertz emission;

(2) similar behavior of the devices with substantially different
lengths of the depleting gate but the same spacings
between gates;

(3) the effect of illumination which promotes the plasma
instability;

(4) the broadening of the terahertz emission spectrum as
a result of the spread of the plasma frequencies of
different 2DEG strips due to a dc potential drop along the
channel and, hence, a difference in the electron densities
electrically induced in these strips.
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